

Terminology Service Development at the Mayo Clinic

Harold Solbrig

Technical Specialist

Medical Informatics Research

Mayo Clinic

Rochester, MN 55901

Outline

- Background why terminology services?
- Where we've been the evolution of terminology services at the Mayo Clinic
- Where we are now current tools and approaches to terminology services
- Where we are going technologies, distribution, future applications

Background

Terminology

The lexicon of a special subject language reflects the organisational characteristics of the discipline by tending to provide as many lexical units as there are concepts...

Juan C. Sager, *A Practical Course in Terminology Processing*. John Benjamins, 1990

Terminology

The items which are characterised by special reference within a discipline are the 'terms' of the discipline, and collectively they form its 'terminology'; those which function in general reference over a variety of sublanguages are simply called 'words', and their totality the 'vocabulary'.

Juan C. Sager. A Practical Course in Terminology Processing

Evolutionary Steps of a Terminology

1) Everyday words (vocabulary) - the differentiating knowledge of the trade or profession is in the formative stage.

2) Overloaded words and/or acronyms

- As the knowledge increases, it becomes cumbersome to continue to use full phrases to express concepts. Common phrases are shortened: "kernel, heap, garbage collection, SCRAM, LASER, ..."

Evolutionary Steps of a Terminology

- 3) **Formalized nomenclature** as the need for precision and detail increases, the management of haphazard wording becomes prohibited. When practical, formalized naming rules are established. *Linnaeus system, chemical names, SNOMED, etc.*
- 4) Coding and classification schemes as specialties and different views emerge, the need to classify, categorize and cross-reference becomes important. *ICD*, etc.

Evolutionary Steps of a Terminology

- 5) **Thesauri** Boundaries between specialties change and cross references become necessary between terminologies of different specialties. *UMLS*
- 6) **Reference Terminologies** Thesauri become unwieldy and too imprecise. A new, synthetic, atomic conceptual organization is formed as a reference point and focus. *SNOMED-CT, Read Codes III*

Terminological Categories

"First Generation" terminological systems

- Typically targeted for paper based information systems (not "IT-enabled")
- Simple hierarchies and organization
- Expensive to maintain and reuse

Angelo Rossi Mori, et. al. Standards to support development of terminological systems for healthcare telematics.

Terminological Categories

"Second Generation" systems

- Compositional systems, based on a categorial structure (semantic categories, semantic links [associations between categories])
- Dynamic organization, systematic description of a subject field
- Flexible and extensible
- Limited semantic based processing

Terminological Categories

- "Third Generation" systems
 - Based on a formal model (a set of symbols and a set of formal rules)
 - Dynamic w/ multiple hierarchies
 - Content and updates are formally validated
 - Complete semantic based processing (behavior is independent of names)

What is a terminology?

Key characteristics:

- Set of terms, definitions and relationships for a (relatively) non-ambiguous partitioning of the conceptual space of a specialized subject area or discipline.
- NOT necessarily related to computerized data processing (or even data processing, period)
- A formal <u>shared context</u> for communication among members of a specialty or trade.

What is a terminology?

- Key characteristics
 - Term ← concept mapping
 - Additional entry phrases including
 - Lexical variants
 - Synonyms
 - Similar or related phrases
 - Intrinsic definitions, annotations, etc.
 - Extrinsic definitions in form of taxonomy / ontology / semantic net

Terminology vs. Ontology

- The word "Ontology", as it is used today refers to the DL-based organization of 'concepts'
- Focus is on the formal organization
- Lexical/linguistic section is underspecified
 - Attributed definitions
 - Terms in multi-languages and contexts
- Behavioral characteristics are strictly DL no rules on how to find a node given an input string...

Uses of Terminology in Clinical Practice

Code Sets – Lists of codes used to fill out forms, data entry, etc.

- Drawn from small to medium size lists
- Typically local to institution
- May not cross databases or applications

Code Sets in Forms

10. Complete the following information if the isolate is *vibrio cholerae 01 or 0139:*

Serotype (452) (check one)

- _ Inaba (1)
- _ Ogawa (2)
- _ Hikojima (3)
- _ Not Done (4)
- _ Unk. (9)

4. Sex: (68)

- _ M (1)
- _ F (2)
- _ Unk. (9)

Biotype (check one)

- _ El Tor (1)
- _ Classical (2)
- _ Not Done (3)
- _ Unk. (9)

Patient home state:

The patient has been enrolled at:

- 1 NIH-sponsored
- 2 Other
- 3 None
- 9 Unknown

- **Classifications -** Codes used to summarize information for the purpose of QA, reporting, reimbursement, etc.
 - ICD-9-CM, CPT4, ...
 - (Usually) Redundant information
 - In use since (at least) the 16th century London Bills of Mortality

Classifications

- Shape and size of "buckets" depends on intended use
 - "Killed by several Accidents"
 - "King's Evil"
 - "Frightened"
 - "Crushed by falling aircraft in terrorism [attack]"
 - "concussion with more than 24 hours loss of consciousness and return to preexisting conscious level"

Indices – Codes used to summarize the content of medical records for the purpose of research and retrieval

MESH, ICD-9-CM, HICDA, ...

Metadata – Codes that describe the format and content of databases, files, forms, etc.

- Enables sharing of information across institutions
- Enables sharing of information within institutions across time
- Only recently becoming formalized

Code Sets

- Often restrictive, incomplete
- Lack of compositional structure
- Not applicable in many settings (free text, quantitative data, etc.

Classifications

- Granularity depends on the context
- Rarely matches the level of specificity needed to accurately record clinical information

Indices

- Classification after the fact
- Can be labor intensive
- Balance must be maintained between granularity and cost
- Cannot anticipate unexpected requests
 - AIDS symptoms
 - Terrorism related events

Responsible for:

- Interpreting medical record
- 2) Classifying record for research purposes

Some ways that the process can fail

- Incomplete or inconsistent knowledge of classification rules
- Clinician resource time is scarce billing record is often perceived as a part of the clinical record
- Indexing is resource intensive
- Indexing process depends on what is known at the time
- Researcher has to have intimate understanding of all parts of the process

Reference Terminology

Heritage of Continuous Improvement

Reference Terminology

- Must represent fine level of clinical detail
- Coverage must be broad enough to span an entire discipline
- Must be well defined
- Must be compositional in nature
 - Post-coordination rules
 - Rules for determine compositional equivalence

Characteristics of a Reference Terminology

- Requires computers and software to be effectively managed (3rd generation system)
- Terminology = content + software

Requirements for Specifying Software Behavior

- Information model What are the entities that are manipulated and how are they related?
- 2. Requirements model What questions will the software need answer?
- 3. Behavioral model How do request various behaviors, what do they do and how do they respond?

Reference Terminology

Where we've been

Healthcare Data Dictionary (Stan Huff / 3M)

- Evolved from the HELP PTXT system
- Software included:
 - Oracle DB running on Unix
 - Tuxedo transaction management system
 - OLE / C++ based client object system
- Reasonably successful
- Proprietary content and algorithms didn't port

Lexicon Query Services (LQS)

- Developed under auspices of the Object Management Group (OMG)
- Read-only no authoring
- Included:
 - Information Model of Terminology
 - Behavioral Model
 - Implementation Specification targeted for the Common Object Request Broker Architecture (CORBA)
 - Syntax specification in IDL
 - Architecture required significant changes in object/attribute layout

LQS Specification

- Schema for globally unique identifiers
- Validate concept code
- Lookup Concept codes by word(s) / string / pattern
- Lookup concept text for a given context / language / lexical type
- Lookup definitions / comments / instructions

- List concepts that have a specified relationship with a supplied concept
- Determine whether two concepts are related
- Reduce a composite expression to a canonical form
- Compare two composite expressions
- . . .

LQS

- Published in 1998
- Not widely used or adopted (outside of 3M)
 - Perceived (and actual) complexity of the specification
 - Not easy to implement
 - Services were not trivial to implement
 - No reference implementation
 - CORBA was difficult and expensive to work with
- Model and functional requirements are still reasonably definitive

Mayo Terminology Services (MTS) (Chris Chute / Mayo)

- Extension of Lexicon Query Services
- Purpose was to provide a complete "breadboard" of terminology components
- Added lexical/linguistic capabilities
 - Spell correction (word locator)
 - Word stemming (using LVG)
 - Word and Phrase completion
 - Plesionymy (words and phrases that could have a very similar meaning in a given context)
 - Candidate term matching

MTS 2000 Implementation

- Java based
- Used JDBC back end (Oracle / Sybase)
- Used SNOMED-RT Database model
- Multiple Implementation Architectures
 - CORBA
 - COM/DCOM bridge
 - Perl Bridge
 - Python Bridge
 - RMI
 - Straight Java Objects

MTS - Lessons Learned

Usefulness within Clinic depended on adoption by internal and external software providers

- Y2K came first
- Waited for HIPAA regulations to solidify
- Needed today's external incentives
 - HIPAA
 - Terrorism Surveillance
 - Bioinformatics

MTS Lessons Learned

Usefulness within Mayo Clinic depended on adoption by internal and external software providers

- Specification needs to be
 - Standards based
 - (Relatively) easy to implement

Where we are today

Where we are today

- Open Terminology Services
- HL7 CTS Specification
- HL7 Terminology Tools
- LDAP Back End
- OTS Using LDAP and Lucene
- NLP processing of medical records and term source

Open Terminology Services

- Refactoring of MTS
- Standards Based:
 - CTS through HL7
 - "Open Source" approach
 - Java Reference implementation
 - LDAP back end
 - ... serious clash w/ Mayo culture

OTS Components

- Model
 - Abstract ('logical') model of information content
 - Implementation models one per technology
- Content
 - Terminology content deployed in various technologies
- Software
 - Browsing and Implementation Tools
 - Distribution and deployment tools
 - Editing and revision tools

OTS Model

OTS Model Logical Model & Schema

OTS Model Implementation Model

OTS Model XML Schema

OTS Content

OTS Software Browsing and Implementation Tools

LDAP Back end

- Lightweight Directory Access Protocol
- Used for publishing read-mostly, highavailability directories of "things":
 - People
 - Resources
 - Organizations
 - Java Services
 - •

LDAP Characteristics

- Hierarchical directories of information
- Focus is read-mostly information
- High availability, high reliability
- Supports data replication
- Reasonable security model
- Supports distributed hierarchies (federation)
- Both open source and commercial tools are widely available

Why LDAP?

- Widespread availability
- The hope is that vendors will find it easier to load their own content into a generic data model than it would be to write a service implementation themselves.

LDAP Back End

- Currently publishing HL7 & related terminologies
- Software & Demo can be found at http://www.terminologyservices.org

OTS Software Distribution and Deployment

OTS Software Distribution and Deployment

OTS Software Editing

OTS Software Revision

Open Terminology Services MTS Extensions

- Creating new indexing strategy w/ distributed LDAP back end
- Lucene based
- Enhancing thesaurus with various semantic distance algorithms
- Alpha should be available shortly

HL7 CTS Specification

- Specification divided into two parts:
 - Messaging layer speaks HL7 messages, data types & process
 - Vocabulary layer speaks code systems / terminology
- Still under revision
- OMG IDL being used for syntax portion
- Having to juggle needed functionality and perceived simplicity

HL7 CTS Specification "Reference" Implementation

- Native Java or SOAP based
- Messaging API uses JDBC back end
- Vocabulary API uses LDAP back end
- Demonstration code (0.8) and source available on web
 - http://www.terminologyservices.org

HL7 Terminology Tools

- Supporting HL7 Vocabulary Maintenance
- XML-Based Submission Format
- Processor and update tool
- Still need to reintroduce historical part
- Editing tools pending:
 - Apelon
 - Health Language Inc?
 - Internal editor under development
 - Protégé?

Open Terminology Services Content

- Once implemented how do we:
 - Import and export code systems from the service?
 - Cross-reference content?
 - Post and distribute updates?
 - Edit and revise content?

Indexing and Cross Referencing

- Graphic of OTS & Lucene index
 - Mention of thesaurus and semantic distance stuff
 - Mention of spelling issues

NLP Based Medical Record Indexing

Where we are going

Vision

- The Lexical Grid
- Blurring the Terminology / Information Model Boundary
- Terminology on the front end

The Lexical Grid

A heterogeneous, distributed collection of terminologies...

- ...linked by a common API
- ...coupled to shared indices
- ...capable of being extended, enhanced an annotated in a looselycoupled, distributed fashion

A Heterogeneous, Distributed Collection of Terminologies

Linked with a Common API

Coupled to Shared Indices

Index API Generating an Index

Index This (Id, {(type, text)}
Update Index(Id, {type,t ext)}
Unindex (Id)
Unindex(part ID)

ID – URN part ID - entire terminology Need URN -> Service Map

Index API Query Interface

MTS ++ List ID's (code system/concept) Matching(phrase, semantic type, etc)

Query -> Id list (csid + code)

Index API Consolidated API

Presents Terminological Space as a Single entity

Consolidated OTS Query – user has no need to query individual vocabularies

Index API Maintenance API

ManageThesaurus
Spelling Dictionaries
Other indexing packages

Extended, enhanced an annotated in a loosely-coupled, distributed fashion

Extended, enhanced an annotated in a loosely-coupled, distributed fashion

Index

- Misspelling tolerant
- Plesionyms
- Morphological Roots
- Phrase Library
- POS Aware
- Co-occurence info
- N-grams
- Etc...

Blurring the Terminology / Information Model

Terminology

Information Model

- Selects the subset of the 'real world' to be discussed in a given context
- Utilizes elements in the terminology
- Tacit or explicit agreements on what is to be:
 - Ignored
 - Refined
 - Expanded and augmented
- Extends the terminology model with nondefinitional characteristics

Information Model

Pharmacy Orders

Dependencies

(Borrowing heavily from RM-ODP)

How Do We Link...

Patient

Pharmacy Orders

Linking at the Attribute Level

Patient

Pharmacy Orders

Database Granularity

The same information can be carried in widely varying structures:

PT# observation

1110112 Heart murmur

A code in a table

Tag/Value Pairs

July 18, 2003

Table 17: Patients with Heart Murmur

Linking at All Levels

Proposed Approach

Protégé

- Promoted as an 'ontology' editor
- Frame based no integrated classifiers
- Open source / open architecture
 - > 50 User written add ons
 - Graphical Browsers
 - Reasoning Engines
 - Back Ends
 - Different Input and Browsing forms
 - Currently being integrated w/ OWL

Protégé and CTS/OTS

- 1. Protégé needs a strong terminological link
 - Words or sets_of_words within an ontology are not sufficient
 - Need to be able to reference and reuse wherever possible
 - External terminologies should be available in the Protégé metaphor

Protégé and CTS/OTS

- 2. Protégé authored ontologies need to be accessible to a wide variety of applications
 - Protégé API is one option
 - Exposing Protégé authored material via. terminology services is a second

Terminology on the Front End

Terminology on the Front End

Tools, standards, and API's that allow the clinician to quickly, accurately enter information in an clear, unambiguous fashion

- Spelling
- Phrase library
- Dictionaries
- Compositional tools
- Data driven forms

Terminology on the Front End

Step 1: Standards

- Standard message formats
 - HL7 and derivatives
- Standard terminologies
 - OHT, UMLS++, Lexical Grid
 - **SNOMED-CT** (???)
- Standard plug-n-play tools
 - CTS, OTS, CCOW, ???

CTS / OTS Merger

- CTS Common Terminology Services
 - HL7 specification under development
 - Attempt to balance simplicity and capability
 - Subset of OTS
- (Hopefully) Version 2.0 & OTS will be one in the same.

OWL and Terminology

- OWL Web Ontology Language
 - Focus is on formal "definitions" an entity is defined by its position in a lattice
 - Lexical aspects underspecified
 - Textual definitions and references
 - Representations / languages / contexts / linguistic forms
- Merger point may be in Protégé
- Alternative may be a transform between LexGrid model and OWL

Reference Terminology

- A single integrated code system is still a long way off
 - Some would argue that it will never occur
- Clinical statements will need to be made using multiple terminologies:
 - ICD-9
 - LOINC
 - HL7
 - SNOMED-CT
 - ISO 3166

- ISO 639
- RxNorm
- ...

- The boundary between 'information mode' and terminological model will continue to be fluid
- How do we achieve consistent, comparable results across
 - Pre-Coordinated terms
 - Information Model
 - Terminological constructs

• Part of:

NLM Grant <u>1R01LM007319-01A1</u>

"Development and Evaluation of Terminology Services"

Summary

- Terminology is both content and software
- Both content and software need to become widely available
 - In a variety of formats
 - For a variety of platforms
- Mayo continues to research and develop:
 - Standardized terminology service software
 - Tools for editing and distribution
 - Mechanisms for combining terminology, information models and implementation

Acknowledgements

NLM <u>1R01LM007319-01A1</u>

"Development and Evaluation of Terminology Services"

NIST FAA 70NANB1H3049

"Standards-Based Sharable Active Guideline Environment"